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Abstract. A generalized Hylleraas basis set with two nonlinear parameters is used to study three-body
systems with two equal masses interacting via coulomb forces within the framework of non-relativistic
quantum mechanics. Accurate variational bounds for the ground state of some of these systems are
obtained improving the rate of convergence of the calculation with respect to an usual Hylleraas basis set.
A study of the interparticle densities is also carried out.

PACS. 36.10.Dr Positronium, muonium, muonic atoms and molecules – 31.10.+z Theory of electronic
structure, electronic transitions, and chemical binding

1 Introduction

The quantum mechanics problem of three bodies with
two equal masses interacting via Coulomb forces is
currently the focus of much research [1–12]. As is widely
commented in reference [10], these systems have been
traditionally divided into two classes or physical models,
the atomic one in which one mass is much heavier than
the other two so an infinite nuclear mass approximation
is used, and the molecular one in which one mass is much
lighter than the other two and the Born-Oppenheimer
approximation is applied. As is discussed in e.g.
references [10,11] this division is rather arbitrary and it
is necessary to use a unified approach.

If λ is the ratio between the mass of the two equal
masses and the mass of the other particle, this parameter
λ goes from 10−3 (the atoms He and H−), to 103

(the molecules H+
2 and µ+µ+e− (the muonic molecular

ion)). There also are hybrid systems with respect to
these two extreme physical pictures such as e−e−e+

(Ps−), π+π+µ−, µ+µ+π−, p+p+µ−, d+d+µ− or t+t+µ−,
where π stands for pion, d for deuterium and t for tritium.

Several techniques have been applied in the litera-
ture to treat some of these systems. Non variational tech-
niques, such as the hyperspherical-harmonic method, have
been widely applied to many systems as for example the
ground state of the positronium negative ion, Ps− [7]; in
reference [10] one can find a complete review of the ap-
plication of this method to Coulomb three body systems.
In the field of variational methods we also have two kinds
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of techniques; the first one is based on the finite-element
method [11] which for some systems provides the most
accurate eigenvalues known in the literature and the sec-
ond one is the more traditional method of expanding the
solution in terms of an auxiliary basis set that was ini-
tially developed to study bound states of atomic helium
in the infinite nuclear mass approach and then applied
to the problem of three body Coulomb systems including
the polarization mass term in the hamiltonian. Several
global basis functions have been used to treat three–body
Coulomb systems. One of these basis is the one built from
explicitly correlated Slater-type geminals which has been
applied to several bound states of helium-like ions [13],
and to some other different three–body Coulomb systems
[3,4,6,9]. Other basis functions are based on the Hyller-
aas type basis set and have been developed and applied to
study, mainly, the first states of the helium-like ions [14–
24] although they have been also applied to the study of
the doubly excited states of Helium [25–27] and some other
systems [1,2,5,8,12]. The main aim of all these works is
the determination of very accurate eigenvalues, giving also
some of them the expectation values of some operators
which are powers of interparticle distances or Dirac delta
functions.

On the other hand, although it is known the central
role of the interparticle distribution function to under-
stand the dynamic of fermionic systems [28], this quantity
is only well known for some bound states of the atomic
helium and its isoelectronic series [29–32] and for the first
S–states of Lithium and its isoelectronic series [33]

The purpose of this work is double. First we use a
generalization of the Hylleraas expansion which is spe-
cially adequate to describe those systems of molecular na-
ture, improving the rate of convergence with respect to
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previous calculations. In particular we shall work in the
scheme introduced by Pekeris [14], in which the wave func-
tion is built in isoperimetrical coordinates in terms of lin-
ear combinations of Laguerre polynomials multiplied by
an exponential. Once obtained the best wave function for
the different systems here studied we shall perform a sys-
tematic study of the interparticle distributions, mainly to
the corresponding to the one of the two identical parti-
cles. This function reveals some interesting features about
the atomic or molecular dynamic behavior of these sys-
tems, which is related to the parameter λ, i.e. the ratio
between the masses of their components. This ratio is the
parameter that determines the rate of convergence of any
calculation.

The scheme of the work is the following. In the next
section we shall introduce the basis set used in this work.
In Section 3 a systematic analysis of the convergence is
performed. In Section 4 we shall present the best results
provided by this basis set as compared with the most accu-
rate values known in the literature for the systems above
mentioned. In particular we have made a systematic study
of the interparticle densities of these systems and its prop-
erties. Finally some conclusions can be found in Section 5.

2 Basis set

For S states of three particles Coulomb systems the
Hamiltonian can be written, once subtracted the center
of mass motion, in terms of the so called isoperi-
metrical coordinates defined as u = −r1 + r2 + r12,
v = r1 − r2 + r12 and w = r1 + r2 − r12, introduced by
Coolidge and James [34], being the range of each one
of them from zero to infinity. Here r12 is the distance
between the two identical particles and ri, i = 1, 2
is the distance between the different particle and each
one of the other two. In units ~ = e = 1 the hamiltonian is

See equation (1) below
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where m is the mass of any of the two equal particles and
M is the mass of the different one. The range of the isoperi-
metric coordinates suggests us to build bases in terms of

φklm(u, v, w) = Lk(αu)Ll(γv)Lm(βw) e−(αu+γv+βw)/2

(2)

where Lk(x) is the Laguerre polynomial of degree k and α,
γ and β are non–linear variational parameters. Since the
singlet (triplet) states must be symmetric (antisymmetric)
under the exchange of the two identical particles, it is
convenient that the elements of the basis have the form

φklm(u, v, w)± φlkm(v, u, w). (3)

In the case α = γ, the orthogonality property of Laguerre
polynomials makes that the number of elements in the
basis that are not orthogonal to one given is small. This
number becomes much greater when α 6= γ as a conse-
quence of the loss of orthogonality between Ln(αx) and
Lm(γx) (x = u, v) [27].

This basis generalizes the ones proposed by Pekeris
and co–workers [14,24] that fulfill the condition α+γ = β
leading to an exponential dependence in the form
exp[−(γr1 + αr2)] without any dependence on r12. In
his study of the ground state of two–electron atoms,
Pekeris also imposed α = γ [14] and fixed α as the square
root of minus the binding energy of the corresponding
eigenstate. Later α was taken as a variational parameter
[21,22], increasing the rate of convergence. In order to
study the P–states of Helium [24], the restriction is
eliminated as the screening of the charge felt by the
two electrons is different. As a matter of fact, due to
the loss of the orthogonality, powers of u, v and w
were used in [24] instead of the Laguerre polynomials.
Both basis have been also used in the last years to
study the doubly excited states of Helium [25–27] (in
this case, Laguerre polynomials have been used in the
basis even when α 6= γ). From all these facts, we can
conclude that the basis with α + γ = β has proved to be
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Table 1. Study of the rate of convergence for the basis with one and two non–linear variational parameters for the systems
p+e−e−, p+p+µ− and p+p+e−. For each value of the parameter N there are two entries corresponding to the basis with one (1)
and two (2) non linear parameters. In the last row we show the best ground state eigenvalues of the systems from reference [23]
(p+e−e−) and the present work.

N Basis p+e−e− p+p+µ− p+p+e−

5 1 −0.527 401 963 −0.494 286 091 −0.583 234 64
2 −0.527 402 591 −0.494 372 447 −0.591 836 06

12 1 −0.527 445 850 −0.494 386 816 9 −0.594 672 48
2 −0.527 445 851 −0.494 386 820 1 −0.596 993 55

15 1 −0.527 445 876 636 −0.494 386 820 195 −0.596 006 26
2 −0.527 445 876 647 −0.494 386 820 243 −0.597 124 43

“Exact” −0.527 445 881 114 −0.494 386 820 248 9 −0.597 139 063 123

very effective in the description of the atomic systems but,
as we will show below, does not work properly to describe
molecular systems.

A way of improving the basis is not to impose α+ γ =
β. Moreover, as we shall study the ground state, and for
simplicity, we shall take α = γ. The main advantage of this
choice is to take into account the correlation between the
two identical particles in the exponential that will become

e−β(r1+r2)/2e−(α−β/2)r12 . (4)

For any calculation we shall only include k + l +m ≤ N ,
so N will limit the dimension of the basis. This dimension
is 34, 252, 444, 715, 1078, 1729 and 2856 for N = 5, 12,
15, 18, 21, 25 and 30 respectively, which are the values of
N we have worked with. The diagonalization is performed
by using a Sturmian sequence from the Householder tri-
adiagonalization method to the hamiltonian matrix once
we have applied the Choleski method to the norm matrix
[35]. This may be carried out in double precision for any of
the dimensions used and will generate a variational wave
function in the form

Ψ(r1, r2, r12) = e−[α(u+v)+βw]/2

×
∑
k,l,m

Cklm[Lk(αu)Ll(αv) + Ll(αu)Lk(αv)]Lm(βw).

(5)

The two non–linear variational parameters are varied us-
ing the simplex iterative method [35] in order to minimize
the expectation value of the hamiltonian.

3 Convergence

With the basis discussed in the previous section we
have studied the following systems: i) Both the muonic
(µ+µ+e−) and the hydrogen (p+p+e−) molecular ions, ii)
the muonic molecular ions p+p+µ−, d+d+µ− and t+t+µ−

where d and t stand for deuterium and tritium, respec-
tively (for these two last systems we have also studied
their excited state of S–type, denoted by d+d+µ−* and
t+t+µ−*) and iii) some exotic systems such as µ+µ+π−,
π+π+µ−, d+d+p− and t+t+p−. All these systems have

been the object of a lot of works (see for example Refs. [9,
11] for a review on these systems where have been ob-
tained for most of them the best ground state eigenvalues
and different expectation values to date). To compare our
results with those of references [9,11] we have used the fol-
lowing particle masses in atomic units: mµ = 206.768262,
mp = 1836.152701, md = 3670.483014, mt = 5496.92158
and mπ = 273.12695. Here we shall present the results
for both the hydrogen and the muonic molecular ions in
atomic units, for the exotic systems d+d+p− and t+t+p−

in proton atomic units (mp = 1, ~ = 1 and e = 1) and for
all the other systems we have used the muon atomic units
(mµ = 1, ~ = 1 and e = 1).

First we will study the improvement that the basis
with two non–linear parameters represents with respect to
the one with only one non–linear parameter. To do that
we have selected three systems with very different values
of λ. We show in Table 1 the ground state eigenvalues
of the p+e−e−, p+p+µ− and p+p+e− systems in terms of
the parameter N , i.e. in term of the dimension of the basis
used. As we can see the rate of convergence is much better
for the basis introduced in this work than for the one with
only one non-linear parameter (α = γ = β/2) except for
the atomic system where the improvement is very small.
From this behavior we have concluded that the basis does
not provide an important improvement for atomic systems
and so we have not included them in this work.

Once compared the basis with one and two non–linear
parameters we shall study the rate of convergence of the
new basis for some of the systems before mentioned. We
have selected in Table 2 the systems µ+µ+π−, t+t+µ−,
µ+µ+e− and p+p+e−. A general result is that the smaller
is the value of the parameter λ, the slower is the rate of
convergence, except for the hydrogen molecular ion. Thus
for the molecule µ+µ+π− it is necessary to work with a
basis of 2856 terms (N = 30) to reproduce the best pre-
vious results of reference [9] and this same occurs with
the π+π+µ− and d+d+p− systems. For increasing values
of λ the rate of convergence improves and there are sev-
eral systems which do not need a very large expansion to
be described with our choice of the basis set with a good
precision. This is the case of the muonic molecular ions
as for example the t+t+µ− one. Finally we also study in
Table 2 the rate of convergence for the molecules µ+µ+e−
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Table 2. Total energies for the ground state of the systems
µ+µ+π−, t+t+µ−, µ+µ+e− and p+p+e− in terms of the pa-
rameter N which governs the dimension of the basis. The re-
sults are given in muon atomic units (mµ = 1, ~ = 1 and e = 1)
for the first system, in proton atomic units (mp = 1, ~ = 1 and
e = 1) for the second one and in atomic units for the last two.

µ+–µ+–π− λ = 0.757041
N α β E

12 0.437355 0.886903 −0.297 689 246 868 5
15 0.473365 0.974718 −0.297 689 261 805 6
18 0.521250 0.978750 −0.297 689 263 662 9
21 0.548743 1.062651 −0.297 689 263 939 6
25 0.594115 1.114015 −0.297 689 264 006 7
30 0.66 1.175 −0.297 689 264 018 2
Ref. [9] – – −0.297 689 264 018 2

t+–t+–µ− λ = 26.584939
N α β E

12 2.496670 1.434181 −0.546 374 225 556 4
15 2.382438 1.773875 −0.546 374 225 613 42
18 2.38 1.77 −0.546 374 225 613 79
21 2.37125 1.784375 −0.546 374 225 613 813
25 2.38 1.77 −0.546 374 225 613 816
Ref. [9] – – −0.546 374 225 598

µ+–µ+–e− λ = 206.768262
12 5.740231 1.299277 −0.585 126 052 379 13
15 6.23 1.3674 −0.585 126 097 102 08
18 6.2 1.511 −0.585 126 097 218 89
21 6.4 1.68 −0.585 126 097 219 191
25 6.3 1.6 −0.585 126 097 219 193
Ref. [11] −0.585 126 097 216

p+–p+–e− λ = 1836.152701
N α β E

12 7.929196 1.172106 −0.596 993 545 606
15 8.692250 1.231895 −0.597 124 428 960
18 9.461878 1.293713 −0.597 138 076 827
21 11.38867 1.284445 −0.597 139 018 757
25 12.625 1.29125 −0.597 139 062 820
30 13.5 1.3 −0.597 139 063 123
Ref. [11] – – −0.597 139 062 6
Ref. [38] – – −0.597 139 063 1

and p+p+e−. The most unfavorable case is that of the hy-
drogen molecular ion, that is common with other methods
of calculation [11]. We can notice how the energy of the
µ+µ+e− molecule is better than those previously reported
and the ground state eigenvalue of the p+p+e− is equal to
the most accurate in the literature.

We have used the simplex algorithm to determine the
values of α and β and these are the values of the pa-
rameters shown in the different tables. However, the pa-
rameters can spread over a given interval providing sim-
ilar results. For example, in the molecular ion µ+µ+e−

with N = 15 we obtain the first nine digits in the en-
ergy (−0.585126097 a.u.) for any of the values α and β
in the intervals (6.2,6.4) and (1.3,1.5), respectively. When
N = 21 the intervals for the parameters to obtain the en-
ergy with twelve exact digits (−0.585126097219 a.u.) in-
crease to (5.2,7.1) and (1.2,2.0), respectively, that reflects
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Fig. 1. The ratio of the two non–linear parameters, α/β, in
terms of the ratio of the masses, λ = m/M , for the results
shown in Table 3.

the fact that for N →∞ the results must be independent
of the values of both parameters. The behavior for the
other systems is similar to the one described for the muon
molecular system.

4 Energies and densities

The best results for the energies of all the systems here
studied are shown in Table 3 where they are compared
with the best ones in the literature. The energies here re-
ported are, in general, the best to date. We also show in
this table the parameters N , α and β. Let us note that
while β is nearly constant for all the systems studied,
α increases with λ. A plot of the ratio α/β in terms of
λ is shown in Figure 1. As it can be seen, this ratio is
nearly constant and approximately 1/2, which it is the
value used for atomic systems, when λ ≤ 2. For greater
values of λ, this value increases rapidly. This is showing
us the transition from the atomic behavior to the molec-
ular one. For those systems for which λ is close to the
unity (i.e. the masses of all the particles are similar), the
basis introduced in this work should not appreciatively im-
prove the results which could be obtained with the basis of
references [21,22].

All the systems studied in the present work have two
equal masses and so we can consider two different inter-
particle distributions. The first one, ρ(r), defined by

ρ(r) =
1

2

∑
i=1,2

∫
dr1dr2δ(r− ri)|Ψ(r1, r2, r12)|2 (6)

provides the probability density of finding one of the two
identical particles separated by the vector r from the un-
like one.

The second interparticle density, h(s), is the proba-
bility distribution for the interparticle distance between
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Table 3. Total energies for the bound states of S–type of the systems here studied as compared with the best results in the
literature. Atomic units are used for the two last systems, proton atomic units (mp = 1, ~ = 1 and e = 1) for the third and
fourth ones and muon atomic units (mµ = 1, ~ = 1 and e = 1) for all the other systems.

System(λ) N α β E

µ+–µ+–π− (0.757041) 30 0.66 1.175 −0.297 689 264 018 2
Ref. [9] −0.297 689 264 018 2

π+–π+–µ− (1.320933) 30 0.71 1.28 −0.299 116 691 535 0
Ref. [9] −0.299 116 691 534 2
d+–d+–p− (1.999007) 30 0.95 1.27 −0.352 625 679 560 7
Ref. [9] −0.352 625 679 560 3
t+–t+–p− (2.993717) 25 1.086752 1.679110 −0.400 036 945 672 8
Ref. [9] −0.400 036 945 672 1

p+–p+–µ− (8.880244) 25 1.80625 1.8575 −0.494 386 820 248 96
Ref. [9] −0.494 386 820 248 58
d+–d+–µ− (17.751675) 25 2.75 1.6 −0.531 111 135 402 45
Ref. [9] −0.531 111 135 402

d+–d+–µ−* 25 1.2052 1.127238 −0.479 706 380 368 5
Ref. [9] −0.479 706 380 368

t+–t+–µ− (26.584939) 25 2.38 1.77 −0.546 374 225 613 816
Ref. [9] −0.546 374 225 598
t+–t+–µ−* 25 1.747142 1.274507 −0.496 762 894 249 5
Ref. [9] −0.496 762 894 248

µ+–µ+–e− (206.768262) 25 6.3 1.6 −0.585 126 097 219 193
Ref. [11] −0.585 126 097 216

p+–p+–e− (1836.152701) 30 13.5 1.3 −0.597 139 063 123
Ref. [11] −0.597 139 062 6
Ref. [38] −0.597 139 063 1

those two identical particles and is given by

h(s) =

∫
dr1dr2δ(s− r12)|Ψ(r1, r2, r12)|2. (7)

These two densities are the so called single–particle den-
sity (ρ(r)) and two–body or intracule density (h(s)) in the
case of atomic systems [28]. Both functions are spherically
symmetric for all the states and systems here studied, so
they will be hereafter denoted by ρ(r) and h(s), respec-
tively.

For the wave function used in this work equation (5), it
is possible to perform analytically all the integrals required
to calculate both ρ(r) and h(s) densities, obtaining

ρ(r) = e−2αr
2N∑
k=−1

akr
k + e−2βr

2N−1∑
k=−1

bkr
k (8)

with a−1 = −b−1, and

h(s) = e−2αs
2N+2∑
k=0

dks
k (9)

where all the coefficients ak, bk and dk can be analytically
evaluated once the linear coefficients Cklm which deter-
mine the variational wave function of equation (5) have
been obtained. As it can be seen, the parameter α deter-
mines the shape of h(s).

We have calculated both functions for the ground
states of the different systems here studied. In Figure 2

we show the density ρ(r) and the radial probability func-
tion D(r) = 4πr2ρ(r). As we can see ρ(r) has a similar
behavior to the single–particle density of atomic systems
in their ground state, i.e. it decreases monotonically for all
the cases studied. We can notice that the D(r) function is
more peaked around its maximum when λ increases what
means that the particles are more localized in the space as
the ratio between their masses increases. For small values
of λ, α is approximately half of β and thus is the more
important parameter to describe ρ(r) at large distances
as we can see in equation (8). When λ increases, α and
the ratio α/β also do and then the role of β becomes more
important in the description of the density.

In general it is not easy to get a good description
for the density distribution h(s) for any of the systems
studied. Maybe the most significant case is that of the
hydrogen molecular ion. To illustrate this we present in
Figure 3 the h–function obtained with four different lev-
els of accuracy. We have taken N = 12, 15, 18 and 21,
which correspond to a basis of dimension 252, 444, 715
and 1078, respectively. The energies obtained with these
wave functions are −0.596993, −0.597124, −0.597138076
and−0.597139018 atomic units respectively. It is apparent
that it is necessary to work with N = 18 in order to have a
good description of the h–distribution. In this same figure
we have plotted the density distribution h(s) obtained for
the best N = 18 β = 2α basis which provides an energy of
−0.596641. We can see that the description is the worst of
all the cases shown, what informs us about the enormous
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Fig. 2. Upper plot: interparticle density ρ(r) of the ground
state of the different systems here studied. The bigger is the
value of the density at the origin, the bigger is the value of λ.
Lower plot: radial density distribution D(r) for the same cases
than in the upper plot. The same convention of lines is used in
both plots. Atomic units are used for the p+p+e− and µ+µ+e−

systems, proton atomic units for the d+d+p− and t+t+p− ones,
and muon atomic units for the rest.

sensitiveness of this quantity to a good parameterization
of the basis used.

As the function h(s) is related to the dynamical behav-
ior of the two equal particles, it must reflect the transition
from atomic to molecular systems. We have shown it in
Figures 4 and 5 for the ground state of all the systems or-
dered with increasing λ. In Figure 4 we have plotted the
h(s) distribution corresponding to the systems µ+µ+π−,
π+π+µ− (upper plot) in muon atomic units, and d+d+p−

and t+t+p− (lower plot) in proton atomic units. In Fig-
ure 5 we show the h(s) function of the systems p+p+µ−,
d+d+µ− and t+t+µ− (upper plot) in muon atomic units,
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Fig. 3. Plot of the interparticle density h(s) of the ground
state of the hydrogen molecular ion p+p+e− for various values
of the parameter N. (Long dashed, short dashed, dotted and
solid line for N = 12, 15, 18 and 21, respectively). The density
corresponding to N = 21 superimposes to the one of N = 18.
The dot–dashed line corresponds to the h(s) distribution for
the optimum N = 18, β = 2α basis.

and of the molecular ions µ+µ+e− and p+p+e− (lower
plot) in atomic units. As we can see the h(s) distribution
has a similar behavior for all the systems, i.e. it increases
from a given value at the coalescence point (s = 0) to a
maximum value at a finite interparticle distance s0, which
is approximately two units for all the plotted systems.
From s0, h(s) decreases monotonically to zero. However
the shape of h(s) is different from one to other system.
For small values of λ, the parameter α is also small and
this function looks like the one of atomic systems [30], i.e.
it is spread along a great distance. When λ increases, α
also does and so h(s) is more localized around its maxi-
mum as it is expected in a molecular system.

Different values obtained from the best wave functions
reported in the previous section are showed in Tables 4-
7. These quantities are the energy, E, of the system, the
binding energy ε defined as the difference between E and
the threshold energy (Eth = −0.5mM/(m+M)); we have
used the conversion factor 27.211 366 181 to present the
results in eV. Another quantity is the virial factor η de-
fined by

η =
〈V 〉

〈T 〉
+ 2 (10)

where 〈V 〉 and 〈T 〉 are the expectation values of the poten-
tial and kinetic energy, respectively. The difference with
respect to zero (i.e. the exact value of η), is a measure of
the quality of the solution found [36]. Some other quanti-
ties are the expectation value of the kinetic energy,< T >,
the expected values

< rn >=

∫
rnρ(r)dr; n = −2,−1, 1, 2, 3 (11)
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Fig. 4. Plot of the interparticle density h(s) of the ground
state of different systems for small values of λ. Upper plot:
µ+µ+π− (dashed line) and π+π+µ− (solid line). Muon atomic
units are used. Lower plot: d+d+p− (solid line) and t+t+p−

(dashed line) systems. Proton atomic units are used.

and

< sn >=

∫
snh(s)ds; n = −2,−1, 1, 2, 3 (12)

and the values ρ(0), h(0), ν = ρ′(0)/2ρ(0) and ν12 =
h′(0)/2h(0). These two last quantities are the two body
cusp ratio for ρ(r) and h(s), respectively. For a general
three body Coulomb system of masses mi and charges qi,
i = 1, 2, 3 the exact value of the two body cusp ratio for
particles j and k is given by [37]

qjqk
mjmk

mj +mk
· (13)
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Fig. 5. The interparticle density h(s) of the ground state of dif-
ferent systems for bigger values of λ. Upper plot: p+p+µ− (solid
line), d+d+µ− (long dashed line) and t+t+µ− (short dashed
lines). Muon atomic units are used. Lower plot: µ+µ+e− (solid
line) and p+p+e− (dashed line) molecules. Atomic units are
used.

So, an additional test for evaluating the quality of the
solutions can be performed by studying how well the two
body cusp ratios ν and ν12 are satisfied.

To avoid round errors in the last figures of the eigen-
values and of the coefficients of the wave functions which
can modify the values of some of the quantities studied
we have made a last calculation of the wave function in
quadruple precision (32 digits).

In Table 4 we show all these quantities for the muonic
molecular ions p+p+µ−, d+d+µ− and t+t+µ−. The values
of the eigenvalue, the virial and of the cusp conditions
improve those previously reported in the literature (see
Ref. [9] and references therein); therefore the description
of the different properties is expected to be also the best.
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Table 4. Different properties of the ground state of the p+p+µ−, d+d+µ− and t+t+µ− molecules. Muon atomic unit are used.
The notation [x] means 10x.

p+–p+–µ− d+–d+–µ− t+–t+–µ−

E −0.494 386 820 248 90 −0.531 111 135 402 45 −0.546 374 225 613 816
ε 253.15019309 325.070689974 362.90655583
< T > 0.494 386 820 248 68 0.531 111 135 402 34 0.546 374 225 613 809
η 4.49 [−13] 7.10 [−14] 1.24 [−14]
< r−2 > 0.995871450344 1.145319640544 1.209447746650
< r−1 > 0.670302578373 0.728486427949 0.753513462251
< r > 2.385666585620 2.119931647555 2.017373310755
< r2 > 7.769503814378 5.946223219653 5.312898696639
< r3 > 31.54908633414 20.29695806223 16.85809914695
< s−2 > 0.148722055479 0.177667878712 0.191091359122
< s−1 > 0.351831516249 0.394750585093 0.414278473274
< s > 3.299486184358 2.834451765779 2.652824757574
< s2 > 12.39040846406 8.876754641773 7.662138314320
< s3 > 52.27366441986 30.43693049989 23.92439065402
ρ(0) 0.131500861 0.1587389692 0.170362122
ν −0.8987879806 −0.9466714843 −0.9637483466
ν(exact) −0.8987879287820 −0.9466714310522 −0.9637483334950
h(0) 3.937035 [−5] 2.438687 [−6] 2.158931 [−7]
ν12 4.4399512 8.876045 13.2925904
ν12(exact) 4.440122200669 8.875837564471 13.29246937327

Table 5. Different properties of the d+d+µ−*, t+t+µ−* and d+d+p− systems. Muon atomic unit are used for the two first and
proton atomic units for the last. The notation [x] means 10x.

d+–d+–µ−* t+–t+–µ−* d+–d+–p−

E −0.479 706 380 368 5 −0.496 762 894 249 5 −0.352 625 679 560 7
ε 35.84424692 83.77072693 966.68405796
< T > 0.479 706 380 364 8 0.496 762 894 249 2 0.352 625 679 560 3
η 7.62 [−12] 7.31 [−13] 9.67 [−13]
< r−2 > 0.947919764567 1.019685967763 0.507401334288
< r−1 > 0.591325294979 0.635216112698 0.462968991583
< r > 3.616306080007 2.965847587998 3.848088932637
< r2 > 20.54097545278 12.88610525812 22.57053339520
< r3 > 147.1073784931 69.01366536064 180.5752799456
< s−2 > 0.073267410869 0.104340453756 0.068009477070
< s−1 > 0.223237829224 0.276906436897 0.220686624046
< s > 5.694739215564 4.453656633527 5.797779744039
< s2 > 37.41878612299 22.47682795653 41.45949441119
< s3 > 273.6005734629 123.1480143469 358.4356038605
ρ(0) 0.1371458494 0.1481589635 0.05010598
ν −0.94667206 −0.963748506 −0.66655701
ν(exact) −0.9466714310522 −0.9637483334950 −0.6665563520030
h(0) 1.6742238 [−6] 2.42666148 [−7] 2.5779519 [−4]
ν12 8.88011 13.292987 0.99947950
ν12(exact) 8.875837564471 13.29246937327 0.9995037482452

The same is made in Table 5 for the excited states
d+d+µ−* and t+t+µ−* and for the d+d+p− system and
in Table 6 for the systems t+t+p−, π+π+µ− and µ+µ+π−.
For these systems we also have a slight improvement in the
values η, ν and ν12 with respect to previous calculations.

Finally, in Table 7 we show the results for the µ+µ+e−

and p+p+e− systems for which we have showed neither the
h(0) nor the cusp ratio for the density h(s) because the
values obtained for ν12 are far from the exact ones. This

is due to the fact that h(s) is nearly zero for small values
of s and so this part of the density is not important in
the minimization process because the variational method
tries to minimize the energy on the whole domain. We
have not found any calculated values of these quantities
in the literature. The results found for some expectation
values reproduce those of Ackermann and Shertzer [11]
and others such as < r−2 >, < r3 >, < s−2 > and < s3 >
are the first time to appear in the literature.
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Table 6. Different properties of the µ+µ+π−, π+π+µ− and t+t+p− systems. Muon atomic unit are used for the two first and
proton atomic units for the last. The notation [x] means 10x.

t+–t+–p− π+–π+–µ− µ+–µ+–π−

E −0.400 036 945 672 852 −0.299 116 691 535 0 −0.297 689 264 018 2

ε 1260.77851535 81.84985914 73.81850518

< T > 0.400 036 945 673 049 0.299 116 691 533 0.297 689 264 02

η −4.93 [−13] 5.22 [−12] −8.27 [−12]

< r−2 > 0.653536135421 0.364655208086 0.359752442908

< r−1 > 0.529919891696 0.389596825348 0.384901003865

< r > 3.256460570962 4.711332016209 4.904732674436

< r2 > 15.61694422211 34.98997089800 39.22537827812

< r3 > 99.33973619727 364.0541039242 451.3535852296

< s−2 > 0.090444169517 0.047458309242 0.045985078909

< s−1 > 0.259765892046 0.180960267628 0.174423479691

< s > 4.794813695979 7.249287114260 7.714412161008

< s2 > 27.71624137288 66.21558475182 76.58564183407

< s3 > 189.6346976635 745.6912170983 955.0386115382

ρ(0) 0.07242508 0.030783333 0.030425736

ν −0.74960503 −0.56913957 −0.56913992

ν(exact) −0.7496066955496 −0.5691387268936 −0.5691387268936

h(0) 2.37982134 [−4] 2.1715150 [−4] 2.8456898 [−4]

ν12 1.4966954 0.6603971 0.4999175

ν12(exact) 1.496858506650 0.6604663292087 0.5

Table 7. Different properties of the µ+µ+e− and p+p+e−

molecular ions. Atomic unit are used. The notation [x] means
10x.

µ+–µ+–e− p+–p+–e−

E −0.585 126 097 219 193 −0.597 139 063 123
ε 2.3818849253 2.6506953926
< T > 0.585 126 097 219 193 0.597 139 063 132
η 1.1 [−16] −1.62 [−11]
< r−2 > 1.3749080127 1.4180673806
< r−1 > 0.8203397594 0.8424929624
< r > 1.7693024514 1.6929662082
< r2 > 3.9384580545 3.5587979297
< r3 > 10.294593431 8.7098303735
< s−2 > 0.2300008891 0.2166562614
< s−1 > 0.4704273243 0.4907077986
< s > 2.2052152449 2.0639138669
< s2 > 5.0365855992 4.3132859413
< s3 > 11.896594181 9.1255668897
ρ(0) 0.198930501 0.206736480
ν 0.9951869565 0.999455911
ν(exact) 0.99518694534779 0.9994556794329

An analysis of the Tables 3-7 shows that the parameter
λ governs the behavior of most of quantities which charac-
terize the shape of the systems. For instance the expected
value 〈r〉 decreases when λ increases and this same occurs
with the expected value 〈s〉 what means that the molecules
become more compact. In fact when the parameter λ tends
to infinity the expected value 〈s〉 approaches 2 (in units

of the smaller mass) that is the Born–Oppenheimer result
[9]. Something similar happens for the values of both den-
sities, ρ(r) and h(s), at the origin: ρ(0) increases when λ
does while h(0) decreases in such a way that the values
of h(0) become negligible for high λ. Let also note that
the value of the parameter α increases, in general, with λ
which is related to the fact that the probability distribu-
tion h(s) is more peaked around its equilibrium distance
as can be seen from equation (9).

5 Conclusions

We have utilized a Hylleraas two–parameter basis set to
study S bound states of three–body Coulomb systems
with unit charges and two equal masses. This basis al-
lows us to obtain analytical expressions for the interpar-
ticle distribution functions, ρ(r) and h(s), and to perform
calculations for any number of states of the basis. The re-
sults obtained for the eigenvalues are the most accurate
in the literature for the systems here studied. This basis
also provides accurate values for the cusps of the densities
improving previous results, except for both the hydrogen
(p+p+e−) and the muonic (µ+µ+e−) molecular ions for
which the cusp ratio ν12 is not well reproduced.
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